If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-243=0
a = 3; b = 0; c = -243;
Δ = b2-4ac
Δ = 02-4·3·(-243)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54}{2*3}=\frac{-54}{6} =-9 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54}{2*3}=\frac{54}{6} =9 $
| x^2+15x-77=0 | | 4a+21=10a-9 | | x^2+15-77=0 | | 8p+9=8p-7 | | 9x-7+6x+23=180 | | y/10+4=-11 | | 3x=3x-33 | | -10=-14y+14y-4 | | 1÷8x=1÷4 | | 64=3.14r^2*10 | | 2z^2-288=0 | | a/20+4/15=915 | | 4y+13=2y-3 | | 6x-8=13+2x | | 4y=29 | | 2(x+1)÷6=3x-5 | | 7n+4=-45 | | 8n²+4=12n | | 9p+12=9(p+3) | | 10=8y-4 | | 16y²-8y=0 | | -20+n=-26 | | 130-3x-6=8x+4 | | -1.4x=31.22 | | 3y+8.1=25.2. | | y+1.258y=0.25 | | 3x-(1/3)=5x+(3/4) | | 4(x/3+8)=40 | | 5z^2-500=0 | | 7(4-m)=49 | | z+9÷4=2.1 | | 3x-6=8x+4-130 |